Totally inverse inequality

https://www.linkedin.com/feed/update/urn:li:activity:6556025381873430529
Let a, b, c are positive numbers such that $a b c=1$. Prove that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{3}{a+b+c} \geq 2\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \cdot \frac{1}{a^{2}+b^{2}+c^{2}} .
$$

Solution by Arkady Alt, San Jose,California, USA.

Let $s:=a+b+c, p:=a b+b c+c a$. Then $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a b+b c+c a}{a b c}=p$, $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}{a^{2} b^{2} c^{2}}=p^{2}-2 s, a^{2}+b^{2}+c^{2}=s^{2}-2 p$ and inequality of the problem becomes
(1) $p-\frac{3}{s} \geq \frac{2\left(p^{2}-2 s\right)}{s^{2}-2 p}$.

Since $s^{2}=(a+b+c)^{2} \geq 3(a b+b c+c a)=3 p$ then $p^{2}-2 s>0$ and $(1) \Leftrightarrow(s p-3)\left(s^{2}-2 p\right) \geq 2 s\left(p^{2}-2 s\right) \Leftrightarrow-4 p^{2} s+p\left(s^{3}+6\right)+s^{2} \geq 0$.
We have $s \geq 3(a b c)^{1 / 3}=3$ and since $9 \geq 4 s p-s^{3}$ (Schure's Inequality $\sum a(a-b)(a-c) \geq 0$ in s, p-notation and normalized by $\left.a b c=1\right)$ then

$$
\sqrt{3 s} \leq p \leq \frac{9+s^{3}}{4 s}, s \geq 3
$$

For quadratic function $h(p):=-4 p^{2} s+p\left(s^{3}+6\right)+s^{2}$ and $p \in\left[\sqrt{3 s}, \frac{9+s^{3}}{4 s}\right]$
we have $\min h(p)=\min \left\{h(\sqrt{3 s}), h\left(\frac{9+s^{3}}{4 s}\right)\right\} \geq 0$ because
$h\left(\frac{9+s^{3}}{4 s}\right)=-4\left(\frac{9+s^{3}}{4 s}\right)^{2} s+\frac{9+s^{3}}{4 s}\left(s^{3}+6\right)+s^{2}=\frac{(s-3)\left(s^{2}+3 s+9\right)}{4 s} \geq 0$
and $h(\sqrt{3 s})=-4 \cdot 3 s \cdot s+\sqrt{3 s}\left(s^{3}+6\right)+s^{2}=$

$$
\frac{(s \sqrt{3 s}-2)(\sqrt{s}-\sqrt{3})(s \sqrt{3 s}+3 s+3 \sqrt{3 s})}{\sqrt{3}} \geq 0
$$

